Прямоугольная изометрияПрямоугольная изометрия - приведенные коэффициенты искажений по всем осям одинаковы.
\[k_x + k_y = k_z = 1, m = \frac {1}{k} = \frac {1}{0,82} = 1,22\]
Следовательно, в приведенной изометрии изображение увеличено в 1,22 раза. Оси изометрической проекции располагаются под углом 120° друг к другу. Прямоугольная изометрия строится по следующему графическому алгоритму: - Относим геометрическую фигуру к системе прямоугольных координат x, y и z, оси которой параллельны осям натуральной системы координат, и проходят через ее высоту (ось z) и ее основание (оси x, y); - в принятой системе координат определяем координаты x, y и z точек геометрической фигуры на эпюре - с помощью измерительного циркуля и линейки. - выполняем построение аксонометрического изображения точек. Для построения аксонометрической проекции точки, например A, при заданном направлении аксонометрических осей необходимо отложить на них действительные координаты этой точки с учетом коэффициентов искажений:
\[x_A^0=k_x x_A; y_A^0=k_y y_A; z_A^0=k_z z_A\]
Построение аксонометрического изображения - прямоугольная изометрия - точки A(35,40,65), расположенной в пространстве Прямоугольная изометрия Прямоугольная изометрия строится по координатам точек (координаты точек определяем на эпюре по проекциям - с помощью измерительного циркуля и линейки). Например, точку A(35, 40, 65) строим следующим образом). Из начала координат О по оси x откладываем 30 мм, затем из полученной точки параллельно оси y откладываем 40 мм . Затем из полученной точки параллельно оси z откладываем 65 мм, и получаем точку A. Рассмотрим построение аксонометрических изображений окружностей, расположенных в плоскостях проекций H, V и W. Если в плоскостях проекций H, V и W или параллельных им плоскостях располагается окружность диаметром d, то на картинную плоскость она спроецируется ортогонально в виде эллипса. Прямоугольная изометрия Проекцией окружности, параллельной плоскостям проекций H, V и W, в ортогональной аксонометрии является эллипс, большая ось которого перпендикулярна «свободной» аксонометрической оси, а малая – совпадает с этой осью. Построение аксонометрических проекций окружности смотри: Построение аксонометрических проекций окружности +
|