Способ раскаткиРазверткой многогранника называется плоская фигура, получаемая последовательным совмещением всех граней многогранника с одной плоскостью. Так как все грани многогранника изображаются на развертке в натуральную величину, построение развертки сводится к определению натуральной величины граней – плоских многоугольников. Способ раскатки используют для построения развертки призмы, в том случае, когда ее основание параллельно какой-либо одной плоскости проекции, а боковые ребра отображаются в натуральную величину на другой плоскости проекций. Построить развертку поверхности наклонной трехгранной призмы ABCDEF, используя способ раскатки ![]() Способ раскатки За плоскость развертки примем плоскость β, проходящую через ребро AD, параллельную фронтальной плоскости проекций. Совместим грань ADEB с плоскостью β. Для этого мысленно разрежем призму по ребру AD, и затем выполним поворот грани ADEB вокруг ребра AD. Определение совмещенного с плоскостью β положения ребра B0E0 из точки B" опускаем луч, перпендикулярный к A"D" и засекаем на нем дугой радиуса A`B`, проведенной из центра A", точку B0. Из точки B0 проводим прямую B0E0, параллельную A"D". Совмещенное положение ребра B0E0 принимаем за новую ось и вращаем вокруг нее грань BEFC до совмещения с плоскостью β. Из точки C" опускаем луч, перпендикулярный к B"E", а из точки B0 - дугой окружности радиусом B`C` засекаем на нем положение точки C0. Из C0 проводим C0F0 параллельно B0E0. Аналогично определяется положение ребра A0D0. Соединив точки A"B0C0A0 и D"E0F0D0 прямыми, получим фигуру A"B0C0A0D0E0F0D" - развертку боковой поверхности призмы. Полная развертка призмы будет получена если к каким-либо из звеньев ломаных линий A"B0C0A0 и D"E0F0D0 пристроить треугольники основания A0B0C0 и D0E0F0. Способ раскатки применяется также для получения развертки цилиндрической поверхности: Развертка цилиндра +
|